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Abstract

In this paper we firstly carry out an extension of the finite-volume WENO schemes to three space dimensions and

higher orders of accuracy. Secondly, we propose to use more accurate fluxes as the building block. These are the HLLC

and MUSTA fluxes [Multi-stage predictor–corrector fluxes for hyperbolic equations, 2003; Restoration of the contact

surface in the HLL Riemann solver, Report CoA 9204, June 1992; J. Shock Waves 4 (1994) 25]. The numerical results

suggest that the new WENO-HLLC and WENO-MUSTA schemes compare satisfactorily with the state-of-the-art

finite-volume scheme of Shi et al. [J. Comput. Phys. 175 (2002) 108].

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The motivation of this paper is to develop improved finite-volume weighted essentially non-oscillatory

(WENO) schemes [6,9,12,14]. The improvements are twofold. Firstly, we generalize the existing two-di-

mensional schemes [6,14] to three space dimensions. We consider schemes with piece-wise parabolic (fifth

order) and piece-wise cubic (seventh order) reconstructions and provide the precise information on the

WENO reconstruction weights and values for the Gaussian integration points over cell faces so that the
schemes can be easily coded. Secondly, we propose to use more accurate upwind HLLC and MUSTA fluxes

as the building block in the WENO schemes. The HLLC flux [17,19,20] contains all waves in the Riemann

problem solution, does not use linearizations of the equations and works well for low-density problems and

sonic points without adhoc fixes. The recent upwind Multi-Stage (MUSTA) flux [18] achieves upwinding by
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evolving in time the initial data for the local Riemann problem via governing equations and thus does not

need any information on the details of the Riemann problem solution. Some researches would refer to this

scheme as the Riemann-solver-free upwind scheme.
We present numerical results of our new WENO-HLLC and WENO-MUSTA schemes in one, two and

three space dimensions. In particular, the convergence studies for the vortex evolution problem [14] and the

double Mach reflection problem [23] demonstrate that our schemes compare satisfactorily with the state-of-

the art finite-volume WENO scheme of Shi et al. [14].

The rest of the paper is organised as follows. In Section 2 we describe the general semi-discrete WENO

framework in three space dimensions. In Section 3 we give all details on the reconstruction procedure in

three space dimensions. The HLLC and MUSTA fluxes are reviewed in Section 4. Numerical results of the

new WENO-HLLC and WENO-MUSTA schemes in one, two and three space dimensions are presented in
Section 5. Conclusions are drawn in Section 6.
2. General framework in three space dimensions

Consider three-dimensional hyperbolic systems in conservation form

otQþ oxFðQÞ þ oyGðQÞ þ ozHðQÞ ¼ 0; ð1Þ

where Qðx; y; z; tÞ is the vector of unknown conservative variables and FðQÞ, GðQÞ and HðQÞ are physical
flux vectors in x, y and z coordinate directions, respectively. Let Iijk be a control volume (a computational
cell) in x–y–z space

Iijk ¼ xi�1=2; xiþ1=2

� �
� yj�1=2; yjþ1=2

� �
� zk�1=2; zkþ1=2

� �
;

with the dimensions given by Dx ¼ xiþ1=2 � xi�1=2, Dy ¼ yjþ1=2 � yj�1=2, Dz ¼ zkþ1=2 � zk�1=2.

Integrating (1) over Iijk, we obtain the following semi-discrete relations:

d

dt
QijkðtÞ ¼

1

Dx
Fi�1=2;jk

�
� Fiþ1=2;jk

�
þ 1

Dy
Gi;j�1=2;k

�
�Gi;jþ1=2;k

�
þ 1

Dz
Hij;k�1=2

�
�Hij;kþ1=2

�
; ð2Þ

where QijkðtÞ is the spatial average of the solution in cell Iijk at time t

QijkðtÞ ¼
1

Dx
1

Dy
1

Dz

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

Qðx; y; z; tÞ dz dy dx ð3Þ

and Fiþ1=2;jk, Gi;jþ1=2;k and Hij;kþ1=2 are spatial averages of physical fluxes over cell faces at time t:

Fiþ1=2;jk ¼
1

Dy
1

Dz

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

FðQðxiþ1=2; y; z; tÞÞ dz dy;

Gi;jþ1=2;k ¼
1

Dx
1

Dz

Z xiþ1=2

xi�1=2

Z zkþ1=2

zk�1=2

GðQðx; yjþ1=2; z; tÞÞ dz dx;

Hij;kþ1=2 ¼
1

Dx
1

Dy

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

HðQðx; y; zkþ1=2; tÞÞ dy dx:

ð4Þ

Expressions (3) and (4) so far are exact relations, but can also be used in the construction of high-order

accurate semi-discrete schemes if QijkðtÞ, Fiþ1=2;jk, Gi;jþ1=2;k and Hij;kþ1=2 are regarded as numerical ap-

proximations to the corresponding exact quantities. Let us denote these approximations by the same

symbols as the exact values in (3) and (4). The simplest scheme which can be considered from the above
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framework results from assuming initial data at time tn as given by a set of piece-wise constant values Qijk

and using the Euler time-stepping to discretize the time derivative. Godunov [5] first proposed to use the

Riemann problem solution for the computation of numerical fluxes resulting in his famous first-order
conservative upwind scheme. A popular approach to the construction of second order Godunov methods,

pioneered by Kolgan [10,11] and developed further by van Leer [21], relies on piece-wise linear recon-

struction of data inside each computational cell. Finally, finite-volume essentially non-oscillatory schemes

[2,8,14] can be regarded as uniformly high order extensions of this approach in two space dimensions in

which the data is represented by polynomials of arbitrary order and TVD Runge–Kutta methods are used

for the discretization of the ODE system (2).

The procedure to evaluate numerical fluxes (4) in three space dimensions is a straightforward extension

of the corresponding two-dimensional one and consists of three main steps. The first step is to discretize the
integrals over the faces (4) using a suitable Gaussian numerical quadrature. For the rest of the paper we

shall concentrate on Fiþ1=2;jk; the expressions for Gi;jþ1=2;k and Hij;kþ1=2 are obtained in an entirely analogous

manner. The application of the tensor product of a one-dimensional N -point quadrature rule to (4) yields

the following expression for the flux in the x coordinate direction:

Fiþ1=2;j;k ¼
1

Dy
1

Dz

XN
a¼1

XN
b¼1

FðQðxiþ1=2; ya; zbÞÞKbKa; ð5Þ

where the subscripts a; b ¼ 1; . . . ;N correspond to different Gaussian integration points ya, zb and weights

Ka, Kb. Expression (5) involves point-wise values of Q whereas the scheme evolves the cell averages of Q.

Thus the second step in evaluating the fluxes is to reconstruct the point-wise values of the solution from cell

averages and obtain high-order accurate approximations to the values of Q at the integration points. In

WENO schemes this is achieved by means of a weighted essentially non-oscillatory (WENO) adaptive-

stencil reconstruction procedure [7,12], which estimates the smoothness of the solution and builds the

reconstruction polynomial in such a way so as to avoid interpolation across discontinuities. After the
reconstruction is carried out at each face we have two sets of values of Q, corresponding to xiþ1=2 � 0 and

xiþ1=2 þ 0 which are often called left and right boundary extrapolated values:

QL
iþ1=2;ab ¼ Qðxiþ1=2 � 0; ya; zbÞ; QR

iþ1=2;ab ¼ Qðxiþ1=2 þ 0; ya; zbÞ: ð6Þ

The last step in the evaluation of the fluxes is to replace FðQðxiþ1=2; ya; zbÞÞ in (5) by a certain monotone
function of left and right boundary extrapolated values F̂ðQL;QRÞ, the building block of the WENO

scheme, or numerical flux

Fiþ1=2;j;k ¼
1

Dy
1

Dz

XN
a¼1

XN
b¼1

F̂ðQL
iþ1=2;ab;Q

R
iþ1=2;abÞKbKa: ð7Þ

To retain uniformly high order of time accuracy the solution is advanced in time by means of TVD Runge–

Kutta methods. In this paper we use the following third order method of Shu [15]:

Q
ð1Þ
ijk ¼ Qn

ijk þ DtLijkðQnÞ;

Q
ð2Þ
ijk ¼ 3

4
Qn

ijk þ
1

4
Q

ð1Þ
ijk þ

1

4
DtLijkðQð1ÞÞ;

Qnþ1
ijk ¼ 1

3
Qn

ijk þ
2

3
Q

ð2Þ
ijk þ

2

3
DtLijkðQð2ÞÞ;

ð8Þ

where LijkðQÞ denotes the spatial operator (right-hand side of (2)) at the appropriate time level. The above

procedure of flux evaluation must be carried out during each stage of the Runge–Kutta method.
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The explicit scheme considered above requires the computation of a time step Dt to be used in (8), such

that stability of the numerical method is ensured. One way of choosing Dt is

Dt ¼ Ccfl �min
ijk

Dx
jSn;x

ijk j
;
Dy
jSn;y

ijk j
;
Dz
jSn;z

ijk j

 !
: ð9Þ

Here Sn;d
ijk is the speed of the fastest wave present at time level n travelling in the d direction, with d ¼ x; y; z.

Ccfl is the CFL number and is chosen according to the linear stability condition of the scheme. When the

three-stage Runge–Kutta method (8) is used in one space dimension the WENO schemes have the optimal

stability condition of Courant number

0 < Ccfl 6 1: ð10Þ

The two-dimensional and three-dimensional schemes have the reduced stability conditions, which in fact

coincide with those of the unsplit Godunov scheme in two and three space dimensions. In two space di-

mensions the stability condition is

0 < Ccfl 6 1=2: ð11Þ

Our numerical experiments show that in three space dimensions the stability condition is

0 < Ccfl 6 1=3: ð12Þ

The description of the scheme is complete when an algorithm to calculate the values of Q at Gaussian
integration points is given and a flux function F̂ðQL;QRÞ is chosen. In the following sections we give details

on the WENO reconstruction and the numerical flux. It is sufficient to explain the general three-dimen-

sional case; the two- and one-dimensional cases will follow easily.
3. WENO reconstruction in three space dimensions

3.1. Scalar finite-volume reconstruction

The reconstruction problem we face is the following. Given spatial averages of a scalar function qðx; y; zÞ
in a cell Iijk

qijk ¼
1

Dx
1

Dy
1

Dz

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

qðx; y; zÞ dz dy dx; ð13Þ

we want to compute the point-wise value of q at Gaussian integration points ðxiþ1=2; ya; zbÞ so that the

reconstruction procedure is conservative and these reconstructed values are of high-order of accuracy.

There are essentially two ways of accomplishing this: genuine multidimensional reconstruction and di-

mension-by-dimension reconstruction. The genuine multidimensional reconstruction [14] considers all cells

in the multidimensional stencil simultaneously to build up a reconstruction polynomial, whereas dimen-

sion-by-dimension reconstruction [2,14] consists of a number of one-dimensional reconstruction sweeps.
The dimension-by-dimension reconstruction is much simpler and less computationally expensive than the

genuine multidimensional one; this is especially so in three space dimensions. Therefore, in this paper we

use dimension-by-dimension reconstruction throughout.

The general idea of dimension-by-dimension reconstruction in two space dimensions is explained in [2] in

the context of the ENO schemes. The extension to three space dimensions is straightforward and consists of
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three steps. Recall that we need left qLiþ1=2;ab and right qRiþ1=2;ab extrapolated values. For the left values the

stencil consists of cells Iixiy iz such that

i� r6 ix 6 iþ r; j� r6 iy 6 jþ r; k � r6 iz 6 k þ r; ð14Þ

where r � 1 is the order of polynomials used in WENO sweeps, e.g. r ¼ 3 corresponds to the weighted
piece-wise parabolic (fifth order) reconstruction and so on. For the right values the stencil consists of cells

for which iþ 1� r6 ix 6 iþ 1þ r and iy , iz vary according to (14).

In the first step of the three-dimensional reconstruction for all indexes iy , iz from the stencil we perform

the one-dimensional WENO reconstruction in the x coordinate direction (normal to the cell face) and

obtain two-dimensional averages with respect to y–z coordinate directions:

vLiy iz ¼
1

Dy
1

Dz

Z yiyþ1=2

yiy�1=2

Z zizþ1=2

ziz�1=2

qðxiþ1=2 � 0; y; zÞ dz dy;

vRiy iz ¼
1

Dy
1

Dz

Z yiyþ1=2

yiy�1=2

Z zizþ1=2

ziz�1=2

qðxiþ1=2 þ 0; y; zÞ dz dy:
ð15Þ

In the second step we perform one-dimensional reconstruction in y coordinate direction for all values of iz
and obtain one-dimensional averages of the solution with respect to z coordinate direction

wL
iz
¼ 1

Dz

Z zizþ1=2

ziz�1=2

qðxiþ1=2 � 0; ya; zÞ dz;

wR
iz
¼ 1

Dz

Z zizþ1=2

ziz�1=2

qðxiþ1=2 þ 0; ya; zÞ dz
ð16Þ

in lines corresponding to the Gaussian integration points on the y axis (x ¼ xiþ1=2, y ¼ ya). Finally, for each
line (x ¼ xiþ1=2, y ¼ ya) we obtain reconstructed point-wise values qðxiþ1=2; ya; zbÞ by again applying the one-
dimensional reconstruction now to wL

iz
, wR

iz
in the z coordinate direction. We note that it is also possible to

do the z sweep in the second step instead of y sweep.

The two-dimensional reconstruction is obtained by using only two first steps in the above algorithm.

We now proceed to define the reconstructed values for each of the one-dimensional WENO sweeps. We

do so in terms of reconstructions of one-dimensional averages ui of a function uðnÞ

ui ¼
1

Dn

Z niþ1=2

ni�1=2

uðnÞ dn; ð17Þ

where Dn is the cell size: Dn ¼ niþ1=2 � ni�1=2. Recall that in one space dimension for any order of accuracy

r there are r candidate stencils for reconstruction. For each such stencil of r cells there is a corresponding

ðr � 1Þth-order polynomial plðnÞ, l ¼ 0; . . . ; r � 1. The WENO reconstruction procedure [12,7] defines the
reconstructed value as a convex combination of rth-order accurate values of all polynomials, taken with

positive nonlinear weights. The weights are chosen in such a way as to achieve ð2r � 1Þth order of ac-

curacy when the solution is smooth and to mimic the ENO idea [8,2] otherwise. For a given point ~n the

design of weights consists of three steps. First, one finds the so-called optimal weights dl so that the

combination of all polynomials with these weights produces the value of the polynomial of order ð2r � 1Þ
corresponding to the large stencil. Next, if optimal weights dl are all positive one defines the nonlinear

weights xl as

al ¼
dl

ðeþ blÞ
2
; xl ¼

akPr�1

l¼0 al
; l ¼ 0; . . . r � 1: ð18Þ



V.A. Titarev, E.F. Toro / Journal of Computational Physics 201 (2004) 238–260 243
Here bl are the so-called smoothness indicators [7]

bl ¼
Xr�1

m¼1

Z niþ1=2

ni�1=2

dm

dxm
plðnÞ

� �2

Dn2m�1 dn; l ¼ 0; . . . ; r � 1: ð19Þ

If some of dl are negative then a special procedure to handle such negative weights must be used, see [14] for

details. The small constant e is introduced to avoid division by zero when bl � 0; we usually set e ¼ 10�6.

The final WENO reconstructed value is then given by

uð~nÞ ¼
Xr�1

l¼0

plð~nÞwl: ð20Þ

In several space dimensions the one-dimensional WENO procedure is applied during each one-

dimensional sweep. For the first sweep (normal to the cell face) the weights are designed to obtain re-

constructed values at xiþ1=2; the corresponding linear weights dl and smoothness indicators bl can be

found in [1,7] for up to r ¼ 6. For the second and third steps the weights, which will be different from the

first step, are designed to achieve ð2r � 1Þth order of accuracy for Gaussian integration points ðya; zbÞ.
The values of the weights are tailored to a specific Gaussian integration rule used to discretize the spatial

integrals (5) and (7). Our numerical experiments show that the best results in terms of accuracy and

computational cost for r ¼ 3; 4 are obtained if the following two-point (fourth order) Gaussian
quadrature is used:Z 1

�1

uðnÞ dn ¼ u

�
� 1ffiffiffi

3
p
�
þ u

�
þ 1ffiffiffi

3
p
�
; ð21Þ

even though the use of (21) leads to formal fourth order spatial accuracy. The WENO sweep in the x
coordinate direction (normal to the cell face) corresponds to the left and right reconstructed values at niþ1=2

whereas the y and z sweeps need values at the Gaussian points na; for the two-point quadrature (21) these
are ni � Dn=ð2

ffiffiffi
3

p
Þ.

It appears as if the weights and reconstruction formulas for the Gaussian integration points na have not
been reported in the literature so far. Therefore, in order to provide the complete information about the

scheme below we give all necessary information for one dimensional sweeps in the piece-wise parabolic

(r ¼ 3) and piece-wise cubic (r ¼ 4) reconstruction.
3.2. Piece-wise parabolic WENO reconstruction (r ¼ 3)

We consider a cell ½ni�1=2; niþ1=2� and provide expressions for uðniþ1=2 � 0Þ, uðni�1=2 þ 0Þ and

uðni � Dn=ð2
ffiffiffi
3

p
ÞÞ. The three candidate stencils for reconstruction are

S0 ¼ ði; iþ 1; iþ 2Þ; S1 ¼ ði� 1; i; iþ 1Þ; S2 ¼ ði� 2; i� 1; iÞ: ð22Þ

The corresponding smoothness indicators are given by [7]
b0 ¼
13

12
ðui � 2uiþ1 þ uiþ2Þ2 þ

1

4
ð3ui � 4uiþ1 þ uiþ2Þ2;

b1 ¼
13

12
ðui�1 � 2ui þ uiþ1Þ2 þ

1

4
ðui�1 � uiþ1Þ2;

b2 ¼
13

12
ðui�2 � 2ui�1 þ uiÞ2 þ

1

4
ðui�2 � 4ui�1 þ 3uiÞ2:

ð23Þ
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The optimal weights dl for the left extrapolated value uLiþ1=2 at xiþ1=2 are given by [7]

d0 ¼
3

10
; d1 ¼

3

5
; d2 ¼

1

10
ð24Þ

and uLiþ1=2 is given by

uLiþ1=2 ¼ uðniþ1=2 � 0Þ

¼ 1

6
x0ð�uiþ2 þ 5uiþ1 þ 2uiÞ þ

1

6
x1ð�ui�1 þ 5ui þ 2uiþ1Þ þ

1

6
x2ð2ui�2 � 7ui�1 þ 11uiÞ: ð25Þ

The optimal weights dl for right boundary extrapolated value uRi�1=2 at xi�1=2 are obtained by

symmetry

d0 ¼
1

10
; d1 ¼

3

5
; d2 ¼

3

10
ð26Þ

and uRi�1=2 is given by

uRi�1=2 ¼ uðni�1=2 þ 0Þ

¼ 1

6
x0ð2uiþ2 � 7uiþ1 þ 11uiÞ þ

1

6
x1ð�uiþ1 þ 5ui þ 2ui�1Þ þ

1

6
x2ð�ui�2 þ 5ui�1 þ 2uiÞ: ð27Þ

For the first Gaussian integration point n ¼ ni � Dn=ð2
ffiffiffi
3

p
Þ the optimal weights are as follows:

d0 ¼
210�

ffiffiffi
3

p

1080
; d1 ¼

11

18
; d2 ¼

210þ
ffiffiffi
3

p

1080
ð28Þ

and the reconstructed value is given by

u ni

�
� Dn

2
ffiffiffi
3

p
�

¼ x0 ui

"
þ ð3ui � 4uiþ1 þ uiþ2Þ

ffiffiffi
3

p

12

#
þ x1 ui

"
� ð � ui�1 þ uiþ1Þ

ffiffiffi
3

p

12

#

þ x2 ui

"
� ð3ui � 4ui�1 þ ui�2Þ

ffiffiffi
3

p

12

#
: ð29Þ

For the second Gaussian integration point n ¼ ni þ Dn=ð2
ffiffiffi
3

p
Þ the optimal weights are obtained from

symmetry by interchanging d0 and d2 in (28), namely

d0 ¼
210þ

ffiffiffi
3

p

1080
; d1 ¼

11

18
; d2 ¼

210�
ffiffiffi
3

p

1080
: ð30Þ

The reconstructed value is

u ni

�
þ Dn

2
ffiffiffi
3

p
�

¼ x0 ui

"
� ð3ui � 4uiþ1 þ uiþ2Þ

ffiffiffi
3

p

12

#
þ x1 ui

"
� ðui�1 � uiþ1Þ

ffiffiffi
3

p

12

#

þ x2 ui

"
� ð � 3ui þ 4ui�1 � vi�2Þ

ffiffiffi
3

p

12

#
: ð31Þ

We note that the nonlinear weights xl must be computed according to (18) separately for each of the points

ni � Dn=ð2
ffiffiffi
3

p
Þ.
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3.3. Piece-wise cubic WENO reconstruction (r ¼ 4)

The four candidate stencils are
S0 ¼ ði; iþ 1; iþ 2; iþ 3Þ; S1 ¼ ði� 1; i; iþ 1; iþ 2Þ;

S2 ¼ ði� 2; i� 1; i; iþ 1Þ; S3 ¼ ði� 3; i� 2; i� 1; iÞ:
ð32Þ

The corresponding smoothness indicators as well as expressions for uLiþ1=2 and uRi�1=2 are rather cumbersome

and can be found in [1]. We omit them to save space and describe the weights and reconstructed values only

for the Gaussian integration points.

For the first Gaussian integration point n ¼ ni � Dn=ð2
ffiffiffi
3

p
Þ the optimal weights are as follows:
d0 ¼
�50

ffiffiffi
3

p
þ 3717

166320
;

d1 ¼
72

ffiffiffi
3

p

7

889
ffiffiffi
3

p

63360

 
� 587

1995840

!
;

d2 ¼
72

ffiffiffi
3

p

7

889
ffiffiffi
3

p

63360

 
þ 587

1995840

!
;

d3 ¼
50

ffiffiffi
3

p
þ 3717

166320

ð33Þ
and the reconstructed value is given by
u ni

�
� Dn

2
ffiffiffi
3

p
�

¼ x0 ui

"
� ð� 43ui þ 69uiþ1 � 33uiþ2 þ 7uiþ3Þ

ffiffiffi
3

p

144
� ð� ui þ 3uiþ1 � 3uiþ2 þ uiþ3Þ

ffiffiffi
3

p

432

#

þx1 ui

"
� ð� 15ui þ 27uiþ1 � 7ui�1 � 5uiþ2Þ

ffiffiffi
3

p

144
þ ð� 3ui þ 3uiþ1 þ ui�1 � uiþ2Þ

ffiffiffi
3

p

432

#

þx2 ui

"
� ð15ui þ 7uiþ1 � 27ui�1 þ 5ui�2Þ

ffiffiffi
3

p

144
þ ð3ui � uiþ1 � 3ui�1 þ ui�2Þ

ffiffiffi
3

p

432

#

þx3 ui

"
� ð43ui � 69ui�1 þ 33ui�2 � 7ui�3Þ

ffiffiffi
3

p

144
� ðui � 3ui�1 þ 3ui�2 � ui�3Þ

ffiffiffi
3

p

432

#
: ð34Þ

For the second Gaussian integration point n ¼ ni þ Dn=ð2
ffiffiffi
3

p
Þ optimal weights are obtained from symmetry

by interchanging d0 and d2:
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d0 ¼
50

ffiffiffi
3

p
þ 3717

166320
;

d1 ¼
72

ffiffiffi
3

p

7

889
ffiffiffi
3

p

63360

 
þ 587

1995840

!
;

d2 ¼
72

ffiffiffi
3

p

7

889
ffiffiffi
3

p

63360

 
� 587

1995840

!
;

d3 ¼
�50

ffiffiffi
3

p
þ 3717

166320
:

ð35Þ

The reconstructed value is

u ni

�
þ Dn

2
ffiffiffi
3

p
�

¼ x0 ui

"
þ ð � 43ui þ 69uiþ1 � 33uiþ2 þ 7uiþ3Þ

ffiffiffi
3

p

144
þ ð � ui þ 3uiþ1 � 3uiþ2 þ uiþ3Þ

ffiffiffi
3

p

432

#

þ x1 ui

"
þ ð � 15ui þ 27uiþ1 � 7ui�1 � 5uiþ2Þ

ffiffiffi
3

p

144
� ð � 3ui þ 3uiþ1 þ ui�1 � uiþ2Þ

ffiffiffi
3

p

432

#

þ x2 ui

"
þ ð15ui þ 7uiþ1 � 27ui�1 þ 5ui�2Þ

ffiffiffi
3

p

144
� ð3ui � uiþ1 � 3ui�1 þ ui�2Þ

ffiffiffi
3

p

432

#

þ x3 ui

"
þ ð43ui � 69ui�1 þ 33ui�2 � 7ui�3Þ

ffiffiffi
3

p

144
þ ðui � 3ui�1 þ 3ui�2 � ui�3Þ

ffiffiffi
3

p

432

#
: ð36Þ
3.4. Reconstruction for systems

The reconstruction for systems can be carried out either in conservative variables or in local charac-
teristic variables, see e.g. [8]. For the first option the above expressions (24)–(36) are used for each com-

ponent of the vector of conservative variables Q. For the characteristic reconstruction one first transforms

to characteristic variables and then applies (24)–(36) to each component of these variables. The final values

are obtained by transforming back to conservative variables.

Although the use of characteristic decomposition in reconstruction increases the computational cost of

the scheme, our experiments show that in some cases it is necessary in order to avoid spurious oscillations.

Therefore, in this paper we always carry out reconstruction in local characteristic variables.

A note needs to be added on the use of the ENO and WENO reconstructions for nonlinear systems. In
general, ENO reconstruction avoids generating large O(1) oscillations near discontinuities by selecting a

smooth stencil of r � 1 cells out of r possible stencils covering the given cell. WENO reconstruction mimics

the behavior of the ENO reconstruction near discontinuities by assigning nearly zero weights to stencils

which cross a discontinuity. However, if the solution contains two discontinuities which are too close to

each other the reconstruction procedure will not be able to find a smooth stencil and spurious oscillations

will appear. As a result, the scheme may crash.

To avoid the above problem we adopt (with appropriate modifications for the present study) a method

proposed in [8]. Consider computation of the left boundary extrapolated values for the cell Iijk used in the
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evaluation of the numerical flux Fiþ1=2;jk. For each Gaussian integration point ðxiþ1=2 � 0; ya; zbÞ we check

the following conditions:

jqðxiþ1=2 � 0; ya; zbÞ � qijkj6 0:9qijk; jpðxiþ1=2 � 0; ya; zbÞ � pijkj6 0:9pijk: ð37Þ

If conditions (37) are not satisfied we decrease the order of reconstruction r in each of the one-dimensional

WENO sweeps and repeat the reconstruction step for the left boundary extrapolated values. If conditions
(37) are not satisfied even for the weighted piece-wise linear (r ¼ 2) reconstruction we switch to a MUSCL-

type reconstruction in each of the one-dimensional sweeps:

uLiþ1=2 ¼ ui þ
Dn
2

S; uRi�1=2 ¼ ui �
Dn
2

S; u ni

�
� Dn

2
ffiffiffi
3

p
�

¼ ui �
Dn

2
ffiffiffi
3

p S; ð38Þ

where S is the limited slope. We use minmod-type limiter [10]

S ¼ 1

2
ðsignðD�Þ þ signðDþÞÞminðjD�j; jDþjÞ; D� ¼ ui � ui�1

Dn
; Dþ ¼ uiþ1 � ui

Dn
:

The right boundary extrapolated values are treated in an entirely analogous manner.

Our numerical experiments show that the use of a less diffusive slope limiter does not improve the ac-

curacy and may sacrifice the robustness of the scheme.

We remark that the use of the above procedure does not in any way degrade the high order of accuracy

of the schemes for smooth solutions; see [8] for details.
4. Numerical flux

In this section for simplicity we omit subscripts a, b of Gaussian integration points and write

QL � QL
iþ1=2;ab, QR � QR

iþ1=2;ab. We also omit the hat over the numerical flux used as the building block.

Godunov [5] first introduced the idea of using the self-similar solution Q�ðs=sÞ, s ¼ x� xiþ1=2, s ¼ t � tn,
of the following local Riemann problem to compute the upwind numerical flux

otQþ oxF ¼ 0; Qðx; 0Þ ¼ QL; x < xiþ1=2;
QR; x > xiþ1=2:

�
ð39Þ

The original Godunov scheme uses the exact Riemann solver and the flux is given as Fiþ1=2 ¼ FðQ�ð0ÞÞ.
More generally, the numerical flux can be defined as a monotone function of left and right extrapolated
values QL, QR

Fiþ1=2 ¼ Fiþ1=2ðQL;QRÞ:

Below we briefly review the new upwind fluxes to be used in the framework of our schemes.
4.1. The HLLC flux

We specialize the presentation of the HLLC flux [19,20] as applied to the three-dimensional compressible
Euler equations for a gamma-law gas of the form (1) with
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Q ¼

q

qu

qv

qw

E

0
BBBBBB@

1
CCCCCCA
; F ¼ Quþ

0

p

0

0

pu

0
BBBBBB@

1
CCCCCCA
; G ¼ Qvþ

0

0

p

0

pv

0
BBBBBB@

1
CCCCCCA
; H ¼ Qwþ

0

0

0

p

pw

0
BBBBBB@

1
CCCCCCA
;

p ¼ ðc� 1ÞðE � 1

2
qðu2 þ v2 þ w2ÞÞ; ð40Þ

where q, u, v, w p and E are density, components of velocity in the x, y and z coordinate directions, pressure
and total energy, respectively; c is the ratio of specific heats. An updated version of HLLC for the split 3D

Euler equations is found in [17]. Assuming a three-wave structure with wave speed estimates SL, S� and SR
the HLLC flux is given by

FHLLC
iþ1=2 ¼

FL if 06 SL;
F�L ¼ FL þ SLðQ�L �QLÞ if SL 6 06 S�;
F�R ¼ FR þ SRðQ�R �QRÞ if S� 6 06 SR;
FR if 0P SR;

8>><
>>: ð41Þ

where

Q�K ¼ qK
SK � uK
SK � S�

� � 1

S�
vK
wK

EK
qK
ðS� � uKÞ S� þ pK

qK ðSK�uK Þ

h i

2
666664

3
777775

for K ¼ L and K ¼ R.

The wave speeds SL, S� and SR must be estimated. We use the procedure for pressure–velocity estimates

of Section 10.5.2 of [17].

We remark that HLLC flux contains all waves in the Riemann problem solution, does not use linear-

ization of the equations and works well for low-density problems and sonic points without any fixes.
4.2. Upwind MUSTA fluxes

In general, the good accuracy of Godunov-type fluxes results from the opening of the Riemann fan and

picking up a single value at cell interface xiþ1=2. Complete (exact or approximate) Riemann solvers recognize

all waves in the Riemann fan and therefore provide good resolution of delicate features of the flow, such as

contact discontinuities and shear waves. Incomplete Riemann solvers do not recognize the intermediate

waves in the Riemann fan and lump them all in one (averaged) state. Centred fluxes can be regarded as very

rough Riemann solvers in which the Riemann fan is not opened at all. As a result, the resolution of all
intermediate waves and associated flow features by incomplete and centred fluxes is very poor; e.g. contact

discontinuities are smeared in time considerably.

A very simple and general approach to the construction of numerical fluxes, which combines the sim-

plicity of centred fluxes and the good accuracy of the Godunov method, is the Multi-Stage (MUSTA)

approach [18]. The key idea of MUSTA is to open the Riemann fan by evolving in time the initial data QL,

QR via the governing equations and a predictor flux and can be explained as follows.
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Assume we know the values Q
ðlÞ
L , Q

ðlÞ
R , adjacent to the interface xiþ1=2, at the stage l. Integrating (39) over

the left ½xiþ1=2 � Dx; xiþ1=2� � ½0;Dt� and right ½xiþ1=2; xiþ1=2 þ Dx� � ½0;Dt� control volumes we obtain the

following relations:

Q
ðlþ1Þ
L ¼ Q

ðlÞ
L � Dt

Dx
F
ðlÞ
iþ1=2

h
� F

ðlÞ
L

i
; F

ðlÞ
L ¼ F Q

ðlÞ
L

	 

;

Q
ðlþ1Þ
R ¼ Q

ðlÞ
R � Dt

Dx
F
ðlÞ
R

h
� F

ðlÞ
iþ1=2

i
; F

ðlÞ
R ¼ F Q

ðlÞ
R

	 

:

ð42Þ

Here we set F
ðlÞ
K ¼ FðQðlÞ

K Þ, K¼L,R, on the grounds that the Riemann-like data extends to �1. The flux

F
ðlÞ
iþ1=2 is computed using the evolved data at stage l

F
ðlÞ
iþ1=2 ¼ Fpred Q

ðlÞ
L ;Q

ðlÞ
R

	 

; ð43Þ

where Fpred is the predictor first order flux used in the construction of the MUSTA flux. The time marching

procedure is stopped when the desired number of stages k is reached. The final MUSTA flux is

FMUSTA
iþ1=2 ¼ Fpred Q

ðkÞ
L ;Q

ðkÞ
R

	 

: ð44Þ

In this paper we use the flux of the First-Order Centred (FORCE) Scheme [16,17] as the predictor flux. It

can be shown [16,17] that the numerical viscosity of the FORCE flux is smaller than that of the Lax–

Friedrichs flux by a factor of two. Recently, the FORCE scheme has been shown to be convergent for some

2� 2 nonlinear systems of hyperbolic conservation laws [3].

The procedure to evaluate the MUSTA flux can now be summarized as follows. The multi-stepping is

started by setting Q
ð0Þ
L � QL, Q

ð0Þ
R � QR for the initial stage l ¼ 0. Then we do

1. Compute the FORCE flux on data at the stage l

Q1=2 ¼ 1

2
Q

ðlÞ
L

	
þQ

ðlÞ
R



� 1

2

Dt
Dx

F Q
ðlÞ
R

	 
	
� F Q

ðlÞ
L

	 


;

F
ðlÞ
iþ1=2 ¼

1

4
FðQðlÞ

L Þ
�

þ 2FðQ1=2Þ þ FðQðlÞ
R Þ � Dx

Dt
Q

ðlÞ
R

	
�Q

ðlÞ
L


�
:

ð45Þ

2. If the desired number of time steps k has been reached (that is l � k) then the computation of the MUS-

TA flux is complete and the final flux is given by Fiþ1=2 ¼ F
ðkÞ
iþ1=2.

3. Otherwise, continue to open the Riemann fan using (42).

4. Goto to step 1.

Practical experience suggests that a number of stages k between 2 and 3 gives numerical results that are

comparable with those from the most accurate of fluxes, namely, the first-order Godunov upwind flux used

in conjunction with the exact Riemann solver [18]. In this paper we use k ¼ 2 throughout.

Concerning efficiency, it is found that, for the one-dimensional Euler equations for ideal gases, the cost

of such a flux is comparable to that of typical existing approximate Riemann solvers. For real gases it is

expected to be more efficient. Moreover, in WENO schemes the reconstruction step accounts for most of
the floating point operations so that the difference in the computational cost between schemes with different

fluxes becomes negligible.

We remark that the MUSTA scheme stems from the idea of solving numerically the local Riemann

problem with a mesh of two cells and applying transmissive boundary conditions at each stage. See [18] for

more details.
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5. Numerical results

In this section we present numerical results of our schemes as applied to the compressible Euler
equations (1) and (40) in one, two and three space dimensions. with the piece-wise parabolic (r ¼ 3) and

piece-wise cubic (r ¼ 4) reconstructions given by (23)–(36). We have also implemented and run the

schemes with higher order reconstructions (r ¼ 5; 6); the results are omitted. We denote the schemes with

the flux X as WENO-X, e.g. the scheme with HLLC flux will be denoted as WENO-HLLC. For com-

parisons we also run the finite-volume scheme of Shi et al. [14] with dimension-by-dimension piece-wise

parabolic (r ¼ 3) reconstruction. This scheme uses the upwind Rusanov flux [13] as the building block and

a three-point Gaussian quadrature to discretize fluxes and thus is of formal fifth order of accuracy in

space.
An important issue is the choice of the Courant number defining the time step. We remark that it seems

to have become a popular practice to demonstrate the formal order of spatial accuracy of WENO schemes

by choosing the time step in such a way that the spatial order dominates the computation. For example,

when the third order Runge–Kutta method (8) is used the time step is chosen according to

Dt � Dxð2r�1Þ=3: ð46Þ

We have run our schemes with such a time step and obtained good results. However, it should be noted that

the use of (46) results in exceedingly small time steps and therefore enormous computational cost of the

scheme. This is especially so in multiple space dimensions. For example, take r ¼ 4, then (46) becomes

Dt � Dx7=3 which is more stringent than the stability condition for parabolic equations.

For hyperbolic equations the natural choice of the time step is the one resulting from the use of a fixed

Courant number. From the point of efficiency it should be as close as possible to the maximum range
allowed by the stability condition (10)–(12). In this paper our goal is to assess the performance of our

methods, as they would be used in practical computations. We run all convergence tests with a fixed

Courant number, which is chosen to be Ccfl ¼ 0:45 in two space dimensions and Ccfl ¼ 0:27 in three space

dimensions.

We evaluate the accuracy and robustness of our methods as applied to four test problems.
5.1. Modified shock/turbulence interaction

This test problem is a variation of the shock/turbulence problem used in [1,7]. We solve the Euler

equations (1) and (40) with the following initial condition defined on ½�5; 5�

ðq; u; pÞ ¼ ð1:515695; 0:523346; 1:80500Þ; x < �4:5;
ð1þ 0:1 sin 20px; 0:0; 1:Þ; x > �4:5;

�
ð47Þ

which consists of a right facing shock wave of Mach number 1.1 impinging into a high-frequency density

perturbation. As the shock moves the perturbation spreads upstream. We compute the flow at the output

time t ¼ 5, which is more than 10 times larger than that of the standard shock/turbulence problem [1]. The

solution contains physical oscillations which have to be resolved by the numerical method.

Fig. 1 shows results of all schemes on a mesh of 2000 cells. A Courant number Ccfl ¼ 0:6 is used. In all

figures symbols denote the numerical solution and the solid line denotes the reference solution computed on

a very fine mesh using the WENO-HLLC scheme. We show only the part of the solution which contains the

smooth structures and the moving shock wave. We see that on the given mesh the WENO scheme of Shi
et al. [14] severely damps the acoustic disturbance which spreads upstream of the shock. The

WENO-HLLC and WENO-MUSTA schemes are more accurate by a factor of two and are superior to the

WENO scheme of Shi et al. [14].



Fig. 1. Computed (symbol) and reference (line) solutions for the Euler equations (1) and (40) with initial condition (47) at output time

t ¼ 5. Schemes with piece-wise parabolic (r ¼ 3) reconstruction. Ccfl ¼ 0:6 and N ¼ 2000 cells are used for all schemes.
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5.2. Two-dimensional vortex evolution problem

We solve the two-dimensional Euler equations with the initial conditions, corresponding to a smooth
vortex, moving at 45� to the Cartesian mesh lines. This test problem is from [1] where it is used to study the

convergence properties of finite-difference WENO schemes. The problem is solved in the square domain

[)5:5]� [)5:5] with periodic boundary conditions. The vortex is defined as the following isentropic per-

turbation to the uniform flow of unit values of primitive variables:

u ¼ 1� e
2p

e
1
2
ð1�r2Þy; v ¼ 1þ e

2p
e
1
2
ð1�r2Þx;

T ¼ 1� ðc� 1Þe2
8cp2

eð1�r2Þ;
p
qc

¼ 1;
ð48Þ

where r2 ¼ x2 þ y2 and the vortex strength is e ¼ 5. We compute the numerical solution at the output time

t ¼ 10 which corresponds to one time period; at this time the vortex returns to the initial position. We use

Ccfl ¼ 0:45 for all runs.
Table 1 shows the convergence study for schemes with the piece-wise parabolic (r ¼ 3) reconstruction.

The errors of cell averages of the solution in L1 and L1 norms are presented. We observe that approxi-

mately fifth order of accuracy is achieved by all schemes. This order is higher than expected from the use of

the third order Runge–Kutta method due to the fact that this problem, for the given output time, is more

sensitive to spatial accuracy than time discretization. Despite the use of the higher-order (sixth order)

Gaussian quadrature for the flux integration, the WENO scheme of Shi et al. [14] is less accurate than the

other schemes by a factor of two.

Table 2 shows the convergence study for schemes with the piece-wise cubic (r ¼ 4) reconstruction. We
see that for a fixed resolution the accuracy improves by a factor of 10. This more than offsets the additional

cost of the higher-order reconstruction as compared to the schemes of Table 1.

It is also interesting to note that for the given meshes the order of accuracy actually exceeds the fourth

order which is expected to result from the use of the two-point Gaussian rule for spatial integration.

We have also run a three-dimensional vortex problem with the initial conditions, corresponding to the

smooth vortex (48), placed in the y–z plane. The results are essentially the same as in the two-dimensional

case and are thus omitted.
Table 1

Density convergence study for the vortex evolution problem (48) at the output time t ¼ 10

Method Mesh L1 error L1 order L1 error L1 order

WENO [14] 25� 25 1.04� 10�1 6.92� 10�1

50� 50 1.38� 10�2 2.91 4.58� 10�2 3.92

100� 100 4.60� 10�4 4.91 2.33� 10�3 4.30

200� 200 1.67� 10�5 4.78 9.05� 10�5 4.68

WENO-HLLC 25� 25 6.61� 10�2 3.85� 10�1

50� 50 9.89� 10�3 2.74 2.76� 10�2 3.80

100� 100 2.68� 10�4 5.21 1.24� 10�3 4.47

200� 200 1.08� 10�5 4.63 5.09� 10�5 4.61

WENO-MUSTA 25� 25 5.09� 10�2 3.53� 10�1

50� 50 8.63� 10�3 2.56 2.28� 10�2 3.95

100� 100 2.17� 10�4 5.32 9.41� 10�4 4.60

200� 200 8.10� 10�6 4.74 3.84� 10�5 4.62

Schemes with piece-wise parabolic (r ¼ 3) reconstruction. Ccfl ¼ 0:45 is used for all schemes.



Table 2

Density convergence study for the vortex evolution problem (48) at the output time t ¼ 10

Method Mesh L1 error L1 order L1 error L1 order

WENO-HLLC 25� 25 2.08� 10�2 1.62� 10�3

50� 50 9.58� 10�4 4.44 5.08� 10�5 5.00

100� 100 3.41� 10�5 4.81 1.56� 10�6 5.02

WENO-MUSTA 25� 25 2.85� 10�2 2.69� 10�3

50� 50 7.74� 10�4 5.20 4.30� 10�5 5.97

100� 100 2.83� 10�5 4.77 1.30� 10�6 5.04

Schemes with piece-wise cubic (r ¼ 4) reconstruction. Ccfl ¼ 0:45 is used for all schemes.
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5.3. Double mach reflection of a strong shock

The setup of the problem is as follows [23]. The computational domain is a rectangle 4 units long and 1

unit wide. At the initial time t ¼ 0 a right-moving Mach 10 shock is set up so that its front makes an angle

of 60� with the x-axis at x ¼ 1=6. Ahead of the shock the gas is at rest with q ¼ 1:4, p ¼ 1. The following
boundary conditions are prescribed. The inflow boundary condition is applied at the left vertical boundary

x ¼ 0 and transmissive boundary condition is used at the right vertical boundary x ¼ 4. At the bottom

boundary y ¼ 0 the exact post-shock values of all gas parameters are set for 06 x6 1=6 whereas for

1=6 < x6 4 reflective boundary conditions are used. The exact motion of the Mach 10 shock is prescribed

at the top boundary y ¼ 1. The output time is t ¼ 0:2.
Figs. 2 and 3 show numerical results of our schemes for three meshes: 480� 120, 960� 240 and

1920� 480 cells. Figs. 4 and 5 show a blow up of the region containing the features of main interests for the

same meshes. The numerical results of the WENO scheme of Shi et al. [14] can be found in Fig. 3.4 of [14]
and are not repeated here.

The detailed discussion of the flow physics can be found in [23]. At the given output time a complicated

flow pattern forms containing two Mach shocks, two slip surfaces and a jet. The second Mach shock is

weak and almost vanishes at the point where it meets the first slip surface, originating from the first Mach

reflection. The second slip surface can be seen near the bottom wall of the domain and is also rather weak.

The jet forms near the point where the first slip surface approaches the bottom wall.

Comparing our results with those in the existing literature [4,7,9,14,23] it is seen that both of our schemes

produce the flow pattern generally accepted at present as corrected, on all meshes. All discontinuities are
well resolved and correctly positioned. Comparing our new schemes, WENO-HLLC and WENO-MUSTA,

we see that the main difference occurs in the resolution of the slip surfaces and the associated jet. This is

explained by the numerical flux. The HLLC flux accounts for all waves present in the solution of the

Riemann problem, slip surfaces in particular. The MUSTA flux also does, but not so accurately as the

HLLC flux.

While studying the numerical results of different methods it is important to realize that the slip surfaces

are physically unstable features of the flow. From the point of view of solving the problem numerically the

converged solution may be obtained only if the full viscous and heat-conductive Navier–Stokes equations
are solved. See e.g. [24] for numerical study of two-dimensional Rayleigh–Taylor instability. When we use

the Euler equations, the viscosity is in fact the numerical viscosity of the method and depends on the mesh

used. As the mesh is refined, no limiting (converged) solution is found. However, for a given particular

mesh the numerical solution may exhibit features, typical of physically unstable flows, but with unknown

viscosity. Therefore, more pronounced instability of the solution (rolling of the slip surfaces) means smaller

numerical diffusion of the WENO-HLLC scheme as compared to the WENO-MUSTA scheme and the

WENO scheme of [14].
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Fig. 2. Density convergence study for the double Mach reflection problem for the WENO-HLLC scheme with the piece-wise parabolic

(r ¼ 3) reconstruction. Meshes: 480� 120, 960� 240 and 1920� 480 cells. 30 contour lines from 2 to 22.

254 V.A. Titarev, E.F. Toro / Journal of Computational Physics 201 (2004) 238–260
5.4. Three-dimensional explosion test problem

Finally, we solve the three-dimensional Euler equations of a gamma law gas (1) and (40). The initial

condition defined on [)1:1]� [)1:1]� [)1:1] consists of two regions of constant but different values of gas

parameters separated by a sphere of radius 0.4:
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Fig. 3. Density convergence study for the double Mach reflection problem for the WENO-MUSTA scheme with the piece-wise

parabolic (r ¼ 3) reconstruction. Meshes: Meshes: 480� 120, 960� 240 and 1920� 480 cells. 30 contour lines from 2 to 22.
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ðq; pÞ ¼ ð1:0; 1:0Þ; r6 0:4;
ð0:125; 0:1Þ; r > 0:4;

�
u ¼ v ¼ w ¼ 0; r2 ¼ x2 þ y2 þ z2: ð49Þ

This initial condition corresponds to the so-called spherical explosion test problem [17]. We compute the

numerical solution at the output time t ¼ 0:25 on a mesh of 101 cells in each coordinate direction. We use
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Ccfl ¼ 0:27 for all runs. We compare the results of the WENO schemes with a reference radial solution,
which is obtained by solving the one-dimensional Euler equations with a geometric source term on a very

fine mesh. See Section 17.1 of [17] for details.
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Figs. 6 and 7 show a comparison between the one-dimensional reference radial solution (solid line) and

the cell averages of the three-dimensional WENO solution (symbols) along the radial line that is coincident

with the x-axis. We show the results only for x > 0. We present distributions of gas density q and internal



Fig. 6. The spherical explosion test problem. Computed (symbol) and reference (line) solutions of density (left) and internal energy

(right) for the WENO-HLLC scheme with piece-wise parabolic reconstruction.

Fig. 7. The spherical explosion test problem. Computed (symbol) and reference (line) solutions of density (left) and internal energy

(right) for the WENO-MUSTA scheme with piece-wise parabolic reconstruction.
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energy e. The solution contains a spherical shock wave and a contact surface travelling away from the

centre and a spherical rarefaction wave travelling towards the origin ð0; 0; 0Þ. We observe that all schemes

obtain the correct solution with the correct values behind the shock wave and the contact surface.

5.5. Cost comparison of the schemes

Our numerical experiments show that for the piece-wise parabolic reconstruction (fifth order of spatial
accuracy) in two space dimensions our finite-volume WENO schemes have essentially the same compu-

tational cost as the WENO scheme of Shi et al. [14]. In three space dimensions our schemes are expected to



V.A. Titarev, E.F. Toro / Journal of Computational Physics 201 (2004) 238–260 259
become faster than the WENO scheme of [14] due to the smaller number of the Gaussian integration points

needed for flux integration over the cell face in (5).

A discussion on cost comparison of finite-difference and finite-volume WENO schemes can be found in a
number of references, e.g. in [22]. It is stated that when the piece-wise parabolic reconstruction is used in

two space dimensions the finite-volume WENO schemes [14] are approximately three times slower than the

corresponding finite-difference WENO schemes [7]. In three space dimensions the difference in cost between

finite-difference and finite-volume WENO schemes is probably more substantial.

However, despite the higher computational cost, the finite-volume schemes have their advantages. They can

be applied on more general unstructured meshes, e.g. on triangular meshes [9,14] whereas finite-difference

schemes are restricted to smooth structuredmeshes. In addition, we remark that theWENO-MUSTA scheme

can be applied to hyperbolic systems for which the characteristic information is not known whereas the flux
splitting in the finite-difference schemes requires the knowledge of eigenvectors and eigenvalues.
6. Conclusions

In this paper we first carried out an extension of the existing finite-volume WENO schemes to three space

dimensions. We provided all necessary information for the reconstruction step of schemes with piece-wise

parabolic (fifth order) and piece-wise cubic (seventh order) reconstructions so that they can be easily coded.
Then we proposed to use the HLLC and MUSTA fluxes as the building block in the WENO schemes. The

upwind HLLC flux is a conventional (one-stage) flux which has successfully been used in the past for the

construction of TVD schemes. The MUSTA flux is a very recent multi-stage upwind flux which does not

need any information on the details of Riemann problem solution.

We presented the numerical results of the new WENO-HLLC and WENO-MUSTA schemes in one, two

and three space dimensions. They suggest that the proposed schemes are more accurate than the existing

finite-volume scheme of Shi et al. [14], due to the more accurate fluxes used as the building block.

A particularly useful scheme is the WENO-MUSTA scheme as it combines the simplicity of centred
WENO schemes and accuracy of upwind WENO schemes with complete Riemann solvers. The advantages

of the WENO-MUSTA scheme will be fully realised when solving very complex hyperbolic systems such as

those arising in multi-phase flows, magnetohydrodynamics and general relativity.
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